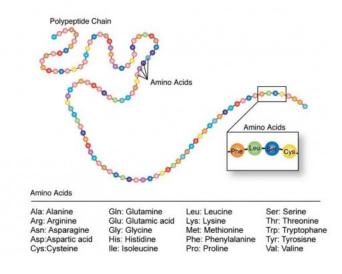
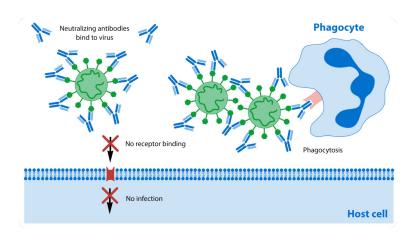


On Pre-trained Language Models for Antibody

Danqing Wang, Fei Ye, Zhou Hao
ByteDance Research, Shanghai, China
University of California, Santa Barbara
Institute for Al Industry Research, Tsinghua University



Protein & Antibody


Protein

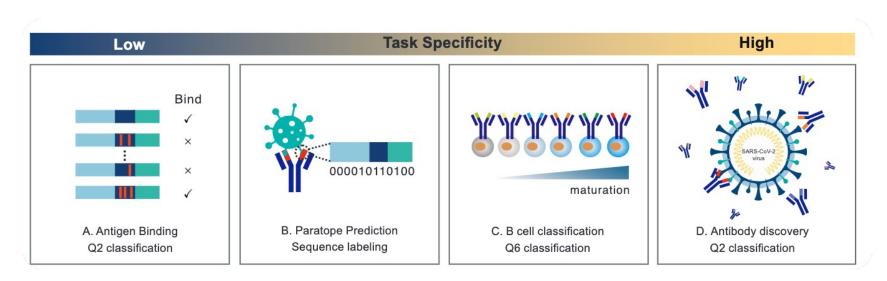
Sequence composed of 20 amino acids

Antibody

- one type of therapeutic protein
- Y-shape to bind with virus

How to represent biological sequences?

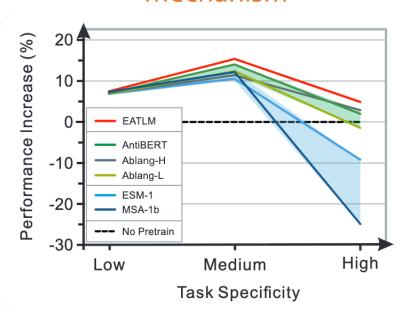
Pretrained Language Models demonstrate remarkable achievements


- Pretrained Protein Language Models (PPLMs)
 - ➤ ESM (Rives et al., 2021)
 - ➤ MSA-Transformer (Rao et al., 2021)
 - ProtTrans (Elnaggar et al., 2021)
- Pretrained Antibody Language Models (PALMs)
 - > Ablang (Olsen et al., 2022b)
 - ➤ AntiBERTy (Ruffolo et al., 2021)

Q1: Can PPLMs directly be used for antibody tasks?
Q2: Are current PALMs highly related to real-world antibody discovery?

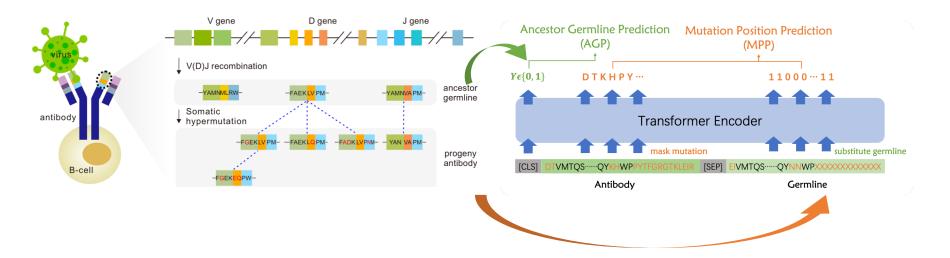
First, Real-world Antibody Discovery Tasks

- => a standard evaluation for antibody
- AnTibody Understanding Evaluation (ATUE)


Key Observations on ATUE

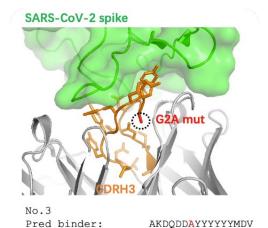
- Low antibody-specificity
 - > PPLMs perform similarly to PALMs
- Medium specificity
 - > PALMs > PPLMs
- High specificity
 - > PALMs are not enough

PPLMs can only solve low specificity tasks


Current PALMs are not good antibody discovers

Opposite evolution mechanism

Secret of Antibody Evolution


- EvoluTion-aware AnTibody Language Model (EATLM)
 - > Incorporate antibody evolution into pretraining

Accelerate Real-world Antibody Discovery

Promising Antibody Binders for SARS-CoV-2

No Predicted Binder	Existing Binder	Epitope	Identity
1 AREGIVGATTGFDY	AREGIVGATTGFDY	spike	1.000
2 ARDLGGYFDY	ARDLGGYFDY	RBD	1.000
3 AKDQDDAYYYYYYMDV	AKDQDD <mark>G</mark> YYYYYYMDV	NTD	0.938
4 ASYYYDSSGY <mark>H</mark> YGMDV	ASYYYDSSGY Y YGMDV	RBD	0.938
5 ARRGLGLYYYGMDV	ARRGDGLYYYGMDV	S2	0.929
6 ARAFRGSYYYGMDV	ARATRGSYYYGMDV	S2	0.929
7 ARLSGSSWYFDY	ARLSGSSWDFDY	spike	0.917
8 ARLGSSSWYFDY	ARVGSSSWYFDY	spike	0.917
9 ARGWLRGYFDL	ARRGWLRGYFDL	RBD	0.909
10 ARDWGELYFDY	ARDWGEYYFDY	RBD	0.909
11 ARDLGGVFDY	ARDLGGYFDY	RBD	0.900

True binder (7N62): AKDQDDGYYYYYYMDV

Take Away

- Present PPLMs struggle with antibody specificity tasks.
- By integrating the antibody evolution process, the pretraining can more accurately capture specificity.
- **A** EATLM successfully identifies multiple promising SARS-Cov-2 binders.

Thanks for listening!

Code

Paper

