

Accelerating Antimicrobial Peptide Discovery with Latent Structure

Danqing Wang, Zeyu Wen, Fei Ye, Lei Li, Hao Zhou

danqingwang@ucsb.edu

UC SANTA BARBARA JI Byte Dance

9/22/23

AMPs are promising treatments towards bacteria

Structures are important to function!

Problem Definition

- Goal
 - Design peptide sequences that can effectively kill bacteria
- Challenge:
 - How to generate peptides with desired secondary structures
 - Limited data (only 3k+ existing AMPs)

Graphical Model

LSSAMP: Training objective

Sequence Reconstruction Secondary structure Prediction

$$Objective = \sum_{i=1}^{L} \log p_{\theta_a}(x_i | z_q(x_i)) + \sum_{i=1}^{L} \log p_{\theta_s}(y_i | z_q(x_i))$$
$$-\sum_{n=1}^{N} sg[z_{e_n}(x_i)] - z_{q_n}(x_i)\|_2^2 + \beta \|[z_{e_n}(x_i)] - sg[z_{q_n}(x_i)]\|_2^2]$$
$$Nulti-scale$$

$$Codebook loss$$

 \mathbf{N}

Peptide Data

Evaluation Pipeline

Computational metric charge, hydrophobicity, hydrophobic moment Public classifiers probability of AMP Wet lab experiment minimal inhibitory concentration (MIC)

Synthesize in wet laboratory

- 1. Generate candidates
- 2. Virtual screening using *charge*, *hydrophobicity*, *hydrophobic moment*
- 3. choose the top-tier in AMP classifiers
- 4. filter by novelty (> 5 residue)
- 5. check solubility based on heuristic rules

LSSAMP produces effective AMPs in wet-lab!

2/21 have been verified in wet-lab with high antimicrobic activity (<128)

Clear liquid indicates bacteria (green) have been killed !

LSSAMP outperforms baselines in biological attributes and comparable in AMP classifiers

LSSAMP generations share similar distribution as Real AMPs

Hydrophobicity

Hydrophobic moment

14

Peptides found by LSSAMP

ID	Sequence	Secondary Structure	сH	υh	D
1	FLPLVRVWAKLI	ННННННННН	2.00.4708	0.7227	6

2 FLSVIKGVWAASLPKQFCAVTAKC HHHHHHHHHHHHHHHHHHHH 3.0 0.3338 0.6599 8 HHT--

Sum up

- Antimicrobial activities highly depend on secondary structure
- LSSAMP: generate desired secondary structure
 - fine-grained control on position
 - multi-scale features
- Data augmentation is important in AMP generation
- Computational metric and wet-lab verify that LSSAMP is effective

Take Away

- Incorporate structure information into sequence generation
- Evaluate model generation based on biological mechanism
- Data augmentation via Alphafold2

Accelerating Antimicrobial Peptide Discovery with Latent Structure (LSSAMP)

DOI

Code